33 research outputs found

    Entity Recommendation for Everyday Digital Tasks

    Get PDF
    Recommender systems can support everyday digital tasks by retrieving and recommending useful information contextually. This is becoming increasingly relevant in services and operating systems. Previous research often focuses on specific recommendation tasks with data captured from interactions with an individual application. The quality of recommendations is also often evaluated addressing only computational measures of accuracy, without investigating the usefulness of recommendations in realistic tasks. The aim of this work is to synthesize the research in this area through a novel approach by (1) demonstrating comprehensive digital activity monitoring, (2) introducing entity-based computing and interaction, and (3) investigating the previously overlooked usefulness of entity recommendations and their actual impact on user behavior in real tasks. The methodology exploits context from screen frames recorded every 2 seconds to recommend information entities related to the current task. We embodied this methodology in an interactive system and investigated the relevance and influence of the recommended entities in a study with participants resuming their real-world tasks after a 14-day monitoring phase. Results show that the recommendations allowed participants to find more relevant entities than in a control without the system. In addition, the recommended entities were also used in the actual tasks. In the discussion, we reflect on a research agenda for entity recommendation in context, revisiting comprehensive monitoring to include the physical world, considering entities as actionable recommendations, capturing drifting intent and routines, and considering explainability and transparency of recommendations, ethics, and ownership of data

    EntityBot: Supporting everyday digital tasks with entity recommendations

    Get PDF
    Everyday digital tasks can highly benefit from systems that recommend the right information to use at the right time. However, existing solutions typically support only specific applications and tasks. In this demo, we showcase EntityBot, a system that captures context across application boundaries and recommends information entities related to the current task. The user's digital activity is continuously monitored by capturing all content on the computer screen using optical character recognition. This includes all applications and services being used and specific to individuals' computer usages such as instant messaging, emailing, web browsing, and word processing. A linear model is then applied to detect the user's task context to retrieve entities such as applications, documents, contact information, and several keywords determining the task. The system has been evaluated with real-world tasks, demonstrating that the recommendation had an impact on the tasks and led to high user satisfaction

    New Functions of Ctf18-RFC in Preserving Genome Stability outside Its Role in Sister Chromatid Cohesion

    Get PDF
    Expansion of DNA trinucleotide repeats causes at least 15 hereditary neurological diseases, and these repeats also undergo contraction and fragility. Current models to explain this genetic instability invoke erroneous DNA repair or aberrant replication. Here we show that CAG/CTG tracts are stabilized in Saccharomyces cerevisiae by the alternative clamp loader/unloader Ctf18-Dcc1-Ctf8-RFC complex (Ctf18-RFC). Mutants in Ctf18-RFC increased all three forms of triplet repeat instability—expansions, contractions, and fragility—with effect over a wide range of allele lengths from 20–155 repeats. Ctf18-RFC predominated among the three alternative clamp loaders, with mutants in Elg1-RFC or Rad24-RFC having less effect on trinucleotide repeats. Surprisingly, chl1, scc1-73, or scc2-4 mutants defective in sister chromatid cohesion (SCC) did not increase instability, suggesting that Ctf18-RFC protects triplet repeats independently of SCC. Instead, three results suggest novel roles for Ctf18-RFC in facilitating genomic stability. First, genetic instability in mutants of Ctf18-RFC was exacerbated by simultaneous deletion of the fork stabilizer Mrc1, but suppressed by deletion of the repair protein Rad52. Second, single-cell analysis showed that mutants in Ctf18-RFC had a slowed S phase and a striking G2/M accumulation, often with an abnormal multi-budded morphology. Third, ctf18 cells exhibit increased Rad52 foci in S phase, often persisting into G2, indicative of high levels of DNA damage. The presence of a repeat tract greatly magnified the ctf18 phenotypes. Together these results indicate that Ctf18-RFC has additional important functions in preserving genome stability, besides its role in SCC, which we propose include lesion bypass by replication forks and post-replication repair

    Mutator Suppression and Escape from Replication Error–Induced Extinction in Yeast

    Get PDF
    Cells rely on a network of conserved pathways to govern DNA replication fidelity. Loss of polymerase proofreading or mismatch repair elevates spontaneous mutation and facilitates cellular adaptation. However, double mutants are inviable, suggesting that extreme mutation rates exceed an error threshold. Here we combine alleles that affect DNA polymerase δ (Pol δ) proofreading and mismatch repair to define the maximal error rate in haploid yeast and to characterize genetic suppressors of mutator phenotypes. We show that populations tolerate mutation rates 1,000-fold above wild-type levels but collapse when the rate exceeds 10−3 inactivating mutations per gene per cell division. Variants that escape this error-induced extinction (eex) rapidly emerge from mutator clones. One-third of the escape mutants result from second-site changes in Pol δ that suppress the proofreading-deficient phenotype, while two-thirds are extragenic. The structural locations of the Pol δ changes suggest multiple antimutator mechanisms. Our studies reveal the transient nature of eukaryotic mutators and show that mutator phenotypes are readily suppressed by genetic adaptation. This has implications for the role of mutator phenotypes in cancer

    Gendered dimensions of obesity in childhood and adolescence

    Get PDF
    BACKGROUND: The literature on childhood and adolescent obesity is vast. In addition to producing a general overview, this paper aims to highlight gender differences or similarities, an area which has tended not to be the principal focus of this literature. METHODS: Databases were searched using the terms 'obesity' and 'child', 'adolescent', 'teenager', 'youth', 'young people', 'sex', 'gender', 'masculine', 'feminine', 'male', 'female', 'boy' and 'girl' (or variations on these terms). In order to limit the potential literature, the main focus is on other reviews, both general and relating to specific aspects of obesity. RESULTS: The findings of genetic studies are similar for males and females, and differences in obesity rates as defined by body mass index are generally small and inconsistent. However, differences between males and females due to biology are evident in the patterning of body fat, the fat levels at which health risks become apparent, levels of resting energy expenditure and energy requirements, ability to engage in certain physical activities and the consequences of obesity for the female reproductive system. Differences due to society or culture include food choices and dietary concerns, overall physical activity levels, body satisfaction and the long-term psychosocial consequences of childhood and adolescent obesity. CONCLUSION: This review suggests differences between males and females in exposure and vulnerability to obesogenic environments, the consequences of child and adolescent obesity, and responses to interventions for the condition. A clearer focus on gender differences is required among both researchers and policy makers within this field

    Theory of Nucleation of Water. I. Properties of Some Clathrate-Like Cluster Structures

    No full text
    The tranquility of classical homogeneous nucleation theory has been disturbed by the introduction of statistical mechanical correction factors to a basically thermodynamic theory. These factors, which appear to be essential, destroy much of the agreement with experiment in the case of water vapor. A molecular model for the prenucleation water clusters is proposed with a view toward resolving some of these difficulties. As a first step, the properties of a few specific cluster configurations have, been examined. Clathrate-like structures containing 16 to 57 water molecules are discussed. The hydrogen bonds were treated as simple harmonic oscillators for the purpose of calculating normal mode frequencies. The Helmholtz free energy of formation of the cluster is calculated from the appropriate partition functions. For these clathrate-like structures the free energy of formation was not found to be a smoothly increasing function of the number of molecules but showed minima corresponding to closed cages

    EntityBot: Actionable Entity Recommendations for Everyday Digital Task

    No full text
    Our everyday digital tasks require access to information from a wide range of applications and systems. Although traditional search systems can help find information, they usually operate within one application (e.g., email client or web browser) and require the user's cognitive effort and attention to formulate proper search queries. In this paper, we demonstrate EntityBot, a system that proactively provides useful and supporting entities across application boundaries without requiring explicit query formulation. Our methodology is to exploit the context from screen frames captured every 2 seconds to recommend relevant entities for the current task. Recommendations are not restricted to only documents but include various kinds of entities, such as applications, documents, contact persons, and keywords representing the tasks. Recommendations are actionable, that is, a user can perform actions on recommended entities, such as opening documents and applications. The EntityBot also includes support for interactivity, allowing the user to affect the recommendations by providing explicit feedback on the entities. The usefulness of entity recommendations and their impact on user behavior has been evaluated in a user study based on real-world tasks. Quantitative and qualitative results suggest that the system had an actual impact on the tasks and led to high user satisfaction

    A cancer-associated DNA polymerase δ variant modeled in yeast causes a catastrophic increase in genomic instability

    No full text
    Accurate DNA synthesis by the replicative DNA polymerases α, δ, and ε is critical for genome stability in eukaryotes. In humans, over 20 SNPs were reported that result in amino–acid changes in Polδ or Polε. In addition, Polδ variants were found in colon–cancer cell lines and in sporadic colorectal carcinomas. Using the yeast-model system, we examined the functional consequences of two cancer-associated Polδ mutations and four polymorphisms affecting well-conserved regions of Polδ or Polε. We show that the R696W substitution in Polδ (analog of the R689W change in the human cancer-cell line DLD-1) is lethal in haploid and homozygous diploid yeast. The cell death results from a catastrophic increase in spontaneous mutagenesis attributed to low-fidelity DNA synthesis by Polδ-R696W. Heterozygotes survive, and the mutation rate depends on the relative expression level of wild-type versus mutant alleles. Based on these observations, we propose that the mutation rate in heterozygous human cells could be regulated by transient changes in gene expression leading to a temporary excess of Polδ-R689W. The similarities between the mutational spectra of the yeast strains producing Polδ-R696W and DLD-1 cells suggest that the altered Polδ could be responsible for a significant proportion of spontaneous mutations in this cancer cell line. These results suggest that the highly error-prone Polδ-R689W could contribute to cancer initiation and/or progression in humans
    corecore